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of heat energy due to mechanisms such as north–south
boundary currents and mixing due to eddies that are shedThe ocean plays a crucial role in the earth’s climate system, and

an improved understanding of that role will be aided greatly by from ocean currents (Robinson [18]). In middle latitudes,
high-resolution simulations of global ocean circulation over periods oceanic eddies typically have widths on the order of 200
of many years. For such simulations the computational require- to 300 km. However, eddies in the higher latitudes typically
ments are extremely demanding and maximum efficiency is essen-

have widths of about 50 km or even less, and boundarytial. However, the governing equations typically used for ocean
currents can have widths of roughly this magnitude. Amodeling admit wave velocities having widely varying magnitudes,

and this situation can create serious problems with the efficiency numerical model that resolves such features over long
of numerical algorithms. One common approach to resolving these times will thus pose some very large computational de-
problems is to split the fast and slow dynamics into separate sub- mands.
problems. The fast motions are nearly independent of depth, and

In such a model, the most straightforward time discreti-it is natural to try to model these motions with a two-dimensional
zation would be an explicit method. However, such asystem of equations. These fast equations could be solved with an

implicit time discretization or with an explicit method with short method would suffer from a severe restriction on the allow-
time steps. The slow motions would then be modeled with a three- able time step, due to the nature of the wave motions
dimensional system that is solved explicitly with long time steps that that are typically found in large-scale models of ocean
are determined by the slow wave speeds. However, if the splitting is

circulation. In existing models it is commonplace to elimi-inexact, then the equations that model the slow motions might
nate sound waves by various means. The remaining dynam-actually contain some fast components, so the stability of explicit

algorithms for the slow equations could come into doubt. In this ics then include several classes of waves; prominent among
paper we discuss some general features of the operator splitting these are external gravity waves (i.e., surface gravity
problem, and we then describe an example of such a splitting and waves) and internal gravity waves. External motions are
show that instability can arise in that case. Q 1996 Academic Press, Inc.

approximately independent of depth, whereas internal
waves can be regarded as undulations in surfaces of con-
stant density within the fluid. The speed of the external1. INTRODUCTION
gravity waves is approximately ÏgH, where g is the accel-
eration due to gravity, and H is the depth. In the deepIn this paper we examine some stability problems that
ocean, the speed of external gravity waves is on the ordercan arise when operator splittings are used to compute
of 200 m/s. On the other hand, the speed of internal wavesnumerical solutions of systems of partial differential equa-
is on the order of 1 or 2 m/s or slower; particle velocitiestions that describe large-scale oceanic flows. Such systems
are typically of at most this magnitude. If one uses anadmit solutions that vary on different time scales, and for
explicit finite difference method to solve a system thatthe sake of efficiency it is desirable to compute the fast
admits both external gravity waves and internal gravityand slow parts of the solution separately. However, if the
waves, then the permissible time step is about two orderssplitting is inexact, then unstable behavior could be dis-
of magnitude smaller than would be the case if the fastplayed by the computational algorithm.
waves were not present. The high computational cost ofOne motivation for performing such computations is
such an explicit method makes it highly desirable to employthat the ocean is an important component of the earth’s
a different kind of time discretization.climate system, and a better understanding of climate will

One such alternative is to split the fast and slow motionsbe aided greatly by high-resolution computer simulations
of global ocean circulation over periods of decades or cen- into separate subproblems. The fast external motions are

essentially two-dimensional, due to the approximate inde-turies. An example of the ocean’s role is the transport
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pendence from depth. One is then tempted to seek a split- by Oberhuber [13] does not rely on an operator splitting,
but instead it uses an implicit time discretization.ting in which the external motions are modelled by a two-

dimensional set of equations, and the slow internal motions To one degree or another, the operator splittings de-
scribed above are inexact. In the case of a linearized floware modelled by a three-dimensional system. The fast, two-

dimensional equations could be solved either with an im- with a horizontal bottom, one can develop a model decom-
position of the solution via separation of variables. See,plicit method with long time steps or with an explicit

method with short time steps that are determined by the e.g., Section 6.11 of Gill [9] and Section 2 of the present
paper. In a rigid-lid model with vertical coordinate z, onefast waves. The larger three-dimensional system could then

be solved with an explicit method having long time steps type of solution is exactly independent of depth, and this
corresponds to external motions. For this mode, the hori-that are determined by the slow wave speeds. However,

if the split is inexact, then the equations that model the zontal velocity field is exactly equal to the vertically aver-
aged velocity described earlier. However, in real dynamicsslow motions might actually admit fast motions, in some

sense. In that case, instabilities could arise if long time the fast and slow motions can be mixed due to such factors
as variable bottom elevation and nonlinearity. In a free-steps are used to advance those equations in time. In this

paper we discuss some general aspects of the operator surface model, the external mode varies slightly with depth;
in such a model, a splitting based on depth averages cansplitting problem, and we then describe the nature of the

instability in one representative ocean model. be inexact, even in the linearized case. Killworth et al. [11]
reported some unstable behavior in their experiments, andThe idea of operator splitting has been incorporated into

several computational models of ocean circulation. In the they speculated that the problem may be due to inexact
modal splitting. Each of the ocean models described earlierexamples described below, the velocity field for the two-

dimensional fast equations is obtained from a vertical aver- uses dissipation in the governing equations and/or smooth-
ing with respect to time in order to suppress the growthage of the horizontal velocity field in the original three-

dimensional system. This procedure is motivated by the of nonlinear instabilities. In practice, these mechanisms
might also suppress some effects of inexact operatorapproximate depth independence of the horizontal velocity

field in external wave motions. In each of the examples splitting.
In the present paper we discuss these issues in the con-described here, the underlying governing equations are the

hydrostatic Euler equations, or ‘‘primitive’’ equations. text of isopycnal ocean modeling. In particular, we describe
the operator splitting that was developed by Bleck andOne of the earliest and most widely used ocean models

is one developed by Bryan and Cox and subsequently mod- Smith [2] for isopycnal coordinates, and we show that this
splitting can yield unstable algorithms in the linearizedified by several researchers. See, e.g., Bryan [4], Cox [5],

Semtner and Chervin [19, 20], and Smith, Dukowicz, and case. We are not aware of any other published operator
splittings for the primitive equations in this coordinateMalone [21]. In this class of models, the free-surface

boundary condition at the top of the fluid is replaced by system.
We focus on isopycnal coordinates because of their ap-a ‘‘rigid lid’’ boundary condition, in which the upper sur-

face is level and the vertical component of velocity is re- peal on physical grounds. In such a coordinate system,
fluid moves approximately along surfaces correspondingquired to be zero along that surface. The rigid-lid approxi-

mation has the effect of making the external gravity wave to constant values of the vertical coordinate, so water
masses are tracked automatically by the choice of coordi-speed infinite, and the fast portion of the solution is mod-

eled by a two-dimensional elliptic equation that is solved nate system. A uniform discretization in the vertical coordi-
nate is not uniform with respect to z; in this sense theat each long time step. In these models the vertical coordi-

nate is a linear height z. grid is adaptive in the vertical direction. Finally, in ocean
modeling it is standard practice to introduce numericalIn recent years several models have been developed that

use a free-surface condition instead of a rigid lid. Killworth diffusion in order to control the growth of nonlinear insta-
bilities. In that event, the direction of diffusion shouldet al. [11] and Dukowicz and Smith [7] developed free-

surface versions of the Bryan–Cox model; in [11] the fast preferably be tangent to isopycnal surfaces so as not to
mask cross-isopycnal diffusion processes that are sutbletwo-dimensional equations are solved explicitly with a

short time step, and in [7] these equations are solved implic- yet important (Redi [16], de Szoeke and Bennett [6]). This
can be done most conveniently in an isopycnal setting.itly with a long time step. Blumberg and Mellor [3] devel-

oped a free-surface model in which the vertical coordinate In Sections 2.1 and 2.2 we summarize some properties
of the primitive equations in isopycnal coordinates, and inis a quantity s that represents the proportional height

relative to the bottom and top of the ocean. Bleck and Section 2.3 we describe the operator splitting that was
introduced by Bleck and Smith for this system. In SectionSmith [2] developed an ‘‘isopycnal’’ free-surface model in

which the vertical coordinate is the reciprocal of density, 3 we specialize this splitting to a linearized flow in one
horizontal dimension with two fluid layers and a flat loweror specific volume a. Another isopycnal free-surface model
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boundary. In Section 4 we formulate a computational algo- is the Montgomery potential and f is the Coriolis parame-
ter. For a derivation, see, e.g., Eliassen and Kleinschmidtrithm based on a simple time stepping scheme for the slow

equations that would be nondissipative and stable if all of [8] or Haltiner and Williams [10].
Equation (2.1c) is based on an assumption that the fluidthe fast variables were identically zero. In this formulation

we also assume that the fast equations are solved exactly is in hydrostatic balance; that is, pz 5 2ga21, or pa 5
2ga21za . This assumption is equivalent to saying that thewith respect to t. We make these choices so that there are

no mechanisms to mask or aggravate any destabilizing vertical component of particle acceleration is negligible,
and it is an accurate approximation for flows in whicheffects of the operator splitting. We then show that the

algorithm for the full system is unstable. In Section 5 we the depth is small relative to the horizontal length scale
(Gill [9]).consider some alternative methods for solving the slow

equations, including two predictor–corrector methods. In the system (2.1), it is assumed that Ã 5 Da/Dt 5 0,
so that the specific volume of each fluid particle remainsThese methods also show instability, although a correction

step can reduce the rate of unstable growth. In Section 6 constant with time. This is equivalent to assuming that
fluid particles flow along surfaces of constant density, whichwe describe the results of some numerical computations

that confirm the preceding analysis. A summary is given is a conventional approximation for large-scale oceanic
flows. A more accurate approximation is to say that fluidin Section 7.
particles flow along surfaces of constant entropy (Gill [9],
Phillips [15]), so entropy would be an attractive vertical2. THE SYSTEM OF EQUATIONS
coordinate. However, this distinction is immaterial to the

In Section 2.1 we describe the hydrostatic Euler equa- present discussion of numerical stability, and the present
tions, or primitive equations, for the case of isopycnal coor- setting is simpler. If one did not assume Ã 5 0, then the
dinates. In Section 2.2 we outline the modal structure of terms Ãua , Ãva , and ( paÃ)a would appear on the left sides
a linearized version of that system. This structure suggests of (2.1a), (2.1b), and (2.1d), respectively.
how one might try to split the fast and slow dynamics of In the horizontal momentum equations (2.1a), (2.1b) the
the primitive equations into separate subproblems. How- gradient of M 5 ap 1 gz represents the horizontal forcing
ever, we also indicate how the split could be inexact in due to pressure. In the present coordinate system, the
practical computations, so that stability can be a concern gradient of p(x, y, a, t) with respect to (x, y) would not
even in the linear case. In Section 2.3 we outline the opera- represent the forcing correctly, as this gradient consists of
tor splitting developed by Bleck and Smith [2]. derivatives for fixed a. Surfaces of fixed a are generally

not horizontal, so px and py include vertical contributions,
2.1. Primitive Equations in Isopycnal Coordinates and a hydrostatic correction is then necessary. This correc-

tion is included in the quantities Mx and My .Here we state the primitive equations in terms of coordi-
In Eq. (2.1d), the quantity pa indicates the thicknessesnates (x, y, a, t), where a is the specific volume, or recipro-

of layers bounded by surfaces of constant density; here,cal of density. We assume that a is a strictly increasing
thicknesses are measured by the pressure differencesfunction of z, so that a can be used as a vertical coordinate.
across layers. Equation (2.1d) expresses changes in layerIt is then possible to write z in the form z(x, y, a, t); for
thickness in terms of horizontal mass flux.fixed a and t, the graph of z(x, y, a, t) as a function of (x,

y) represents a surface of constant density in the fluid.
Let u(x, y, a, t) and v(x, y, a, t) denote the components 2.2. External and Internal Modes in

of fluid velocity in the x and y directions, respectively, the Linearized System
and let p(x, y, a, t) denote the pressure. We consider the

We now describe the modal structure of solutions of aprimitive equations in the form
linearization of the primitive equation system (2.1). One
such mode is the external mode, and the others are internal

ut 1 uux 1 vuy 2 fv 5 2Mx (2.1a) modes. Solutions of the linearized system do not exhibit
all of the features of solutions of the nonlinear systemvt 1 uvx 1 vvy 1 fu 5 2My (2.1b)
(2.1), but a description of the external and internal modes

Ma 5 p (2.1c) in the linearized case can indicate some of the issues that
are involved in splitting fast and slow dynamics into sepa-pat 1 ( pau)x 1 ( pav)y 5 0, (2.1d)
rate subsystems.

We consider solutions of (2.1) that are small perturba-
where tions of a static state for which u 5 v 5 0, z 5 z̃(a),

the pressure is p̃(a), and the Montgomery potential is
M̃(a) 5 a p̃(a) 1 gz̃(a). We also assume that f is constant.M(x, y, a, t) 5 ap(x, y, a, t) 1 gz(x, y, a, t) (2.1e)
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For purposes of separating variables, suppose abot # The eigenvalue problem (2.5) is a regular Sturm–
Liouville problem (Morse and Feshbach [12]). The prob-a # atop , where abot and atop are independent of (x, y, t).

This assumption implies that the top and bottom of the lem admits an infinite sequence of eigenvalues l0 , l1 , ...,
with a complete set of corresponding eigenfunctions f(0),fluid are surfaces of constant density. In the static solution

mentioned above, these surfaces are horizontal, due to the f(1), .... Each eigenvalue lj is positive, since p̃a , 0, and
we can label the eigenvalues so that 0 , l0 , l1 , ... withcondition z 5 z̃(a). This implies that the bottom of the fluid

must be planar and level in the present linearized model. lj R y as j R y. The eigenfunctions are orthogonal with
respect to the weight function p̃a(a).For solutions that are small perturbations of the static

state, we denote the pressure by p̃(a) 1 p(x, y, a, t) and General solutions of the linearized system (2.2) can be
expressed in terms of these eigenfunctions. For example,the Montgomery potential by M̃(a) 1 M(x, y, a, t). That

is, in the present discussion p and M will not denote pres- one can write
sure and Montgomery potential, respectively, but instead
they will denote perturbations in those quantities. The

u(x, y, a, t) 5 Oy
j50

û( j)(x, y, t)f( j)(a),system (2.1) is then approximated by the linear system

ut 2 fv 5 2Mx (2.2a) where
vt 1 fu 5 2My (2.2b)

Ma 5 p (2.2c)
û( j)(x, y, t) 5

eatop

abot
u(x, y, a, t)f( j)(a) p̃a(a) da

eatop

abot
(f( j)(a))2p̃a(a) da

. (2.6)
pa t 1 p̃a(a)(ux 1 vy) 5 0. (2.2d)

At the top of the fluid the pressure is assumed to be Analogous representations apply to v and M, and the rela-
equal to a constant value of atmospheric pressure, so the tion Ma 5 p then yields an expansion for p.
perturbation p in pressure must satisfy the boundary con- Each set of coefficients hû( j), v̂( j), M̂ ( j)j satisfies the system
dition (2.4), with l 5 lj . This system has the structure of the

linearized shallow water equations (e.g., Pedlosky [14]),
with the constant 1/lj playing the role of the square of thep 5 0 if a 5 atop . (2.3a)
wave speed. We will therefore write lj in the form lj 5 1/
c2

j , with cj . 0. The largest wave speed out of all of theAt the bottom of the fluid, we have z(x, y, abot , t) 5
modes is then c0 , and cj R 0 as j R y. Estimates of c0 ,z̃(abot), so the perturbation in z is zero when a 5 abot .
c1 , ..., are given, e.g., by Bennett [1].The perturbations in the pressure and Montgomery poten-

Of particular interest in the present paper is the problemtial must then satisfy
of characterizing the fastest motions in the system and
splitting these motions into a separate subproblem. Ac-M 5 ap 5 aMa if a 5 abot . (2.3b)
cordingly, we now examine the structure of the eigenfunc-
tion f(0) that corresponds to the smallest eigenvalue l0 andNow use the method of separation of variables to con-
thus the largest wave speed c0 .struct solutions of the system (2.2) with boundary condi-

Suppose that a function f satisfies the differential equa-tions (2.3). If functions of the form u(x, y, a, t) 5 û(x, y,
tion (2.5a), faa(a) 5 lp̃a(a)f(a), with l . 0. Sincet)f(a), v(x, y, a, t) 5 v̂(x, y, t)f(a), and M(x, y, a, t) 5
p̃a(a) , 0, faa and f must have opposite signs. Suppose,M̂(x, y, t)f(a) are inserted into (2.2), one obtains
without loss of generality, that f(atop) . 0. The boundary
condition (2.5b) implies fa(atop) 5 0; as a is decreased

ût 2 fv̂ 5 2M̂x from atop , the derivative fa must then become positive.
When a reaches abot , f must satisfy the boundary conditionv̂t 1 fû 5 2M̂y (2.4)
(2.5c), which states that the tangent line to f must coincide

M̂t 1 (1/l)(ûx 1 v̂y) 5 0, with the line through the origin and the point (abot ,
f(abot)). If l is equal to the smallest possible eigenvalue

where l and f satisfy l0 , then the concavity of the eigenfunction f maintains a
constant sign, f and fa remain positive, and the largest
value of fa is found when a 5 abot . However, for largerfaa(a) 5 lp̃a(a)f(a) for abot # a # atop (2.5a)
eigenvalues l, the magnitude of faa is larger relative to f,

fa 5 0 for a 5 atop (2.5b)
so the graph of f has larger curvature and undergoes oscil-
lations.f 5 afa for a 5 abot . (2.5c)
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We now estimate the extent to which f(0)(a) varies for fast and slow subproblems, then the equations that model
the slow part of the solution may in fact contain someabot # a # atop . For each a in this interval, the mean value

theorem implies f(0)(a) 5 f(0)(abot) 1 f(0)
a (b)(a 2 abot) fast elements. This raises the possibility that if an explicit

method is used to solve those equations, then the methodfor some b between a and abot . Therefore, uf(0)(a) 2
f(0)(abot)u 5 uf(0)

a (b)(a 2 abot)u # uf(0)
a (abot)u(atop 2 could be unstable. In the remainder of this paper we exam-

ine the operator splitting of Bleck and Smith and showabot) 5 uf(0)(abot)/abotu(atop 2 abot). Here we have used
the boundary condition (2.5c). We then have that linear instailities can arise in that case.

2.3. An Operator Splitting

Uf(0)(a) 2 f(0)(abot)
f(0)(abot)

U#
atop 2 abot

abot
(2.7) Here we describe the operator splitting developed by

Bleck and Smith [2]. In the following, we use the term
‘‘barotropic’’ to refer to the system of equations that ap-

if abot # a # atop . The relative change in f(0) is thus proximately models the fast external motions, and we use
bounded by the relative change in a. In the ocean, a typi- the term ‘‘baroclinic’’ to refer to the system corresponding
cally varies by at most 1% or so (Gill [9]), and for that to the slow internal motions. In the case of linearized
variation of a the eigenfunction f(0) is nearly constant. dynamics, the external mode is approximately barotropic

Suppose that the interval abot # a # atop is divided into in the sense of classical fluid dynamics, and it is common
discrete subintervals, so that the fluid is regarded as a stack practice to refer to this mode as barotropic (Gill [9]). In
of immiscible layers. For the jth mode in the solution, the present paper, we adopt the convention that the terms
the divergence of the horizontal velocity field is (û( j)

x 1 ‘‘external’’ and ‘‘internal’’ refer to the exact modal struc-
v̂( j)

y )f( j)(a). If j 5 0, then the divergence is nearly indepen- ture of the linearized primitive equations, and the terms
dent of a, so for any (x, y, t) the thicknesses of all layers ‘‘barotropic’’ and ‘‘baroclinic’’ are used in the context of
are changed by approximately the same proportion, and operator splitting to refer to subsystems that approximately
the motion is manifested by variations in the elevation of describe fast and slow motions, respectively.
the free surface at the top of the fluid. On the other hand, We begin with the nonlinear hydrostatic Euler equations
when j $ 1 the eigenfunction f(j) oscillates and changes (2.1), which can be written in the form
sign. Thus, for fixed (x, y, t) some layers are thickened and
others are thinned, and the motion is manifested primarily ut 1 (u ? =)u 1 f k 3 u 5 2=M (2.8a)
by undulations in surfaces of constant density within the

Ma 5 p (2.8b)
fluid. The mode corresponding to j 5 0 is the external
mode, and the other modes are internal modes. pa t 1 = ? (upa) 5 0 (2.8c)

Now suppose that one wants to split the fast and slow
where u(x, y, a, t) 5 (u(x, y, a, t), v(x, y, a, t)). The notationdynamics into separate subproblems for the sake of compu-
k 3 u refers to the first two components of the cross producttational efficiency. The preceding discussion suggests that
(0, 0, 1) 3 (u, v, 0), namely (2v, u).one might model the fast motions with a two-dimensional

In [2] the velocity field for fast external motions is ap-system of equations that is independent of depth. In the
proximated by the weighted vertical averagemethod of Bleck and Smith [2], the x-component of the

external velocity field is approximated by a multiple of
eatop

abot u dp 5 eatop
abot u pa da. The linearization of this expression

u(x, y, t) 5
eatop

abot
u(x, y, a, t) pa da

eatop

abot
pa da (2.9a)

is eatop
abot u p̃a da ; a comparison with (2.6) shows that if the

formula in [2] is applied to the linearized case, then one
is computing a projection onto the external mode in which

5
1

pbot(x, y, t)
Eatop

abot

uu pau da,the eigenfunction f(0) is approximated by a constant. Ac-
cording to (2.7), this is an accurate approximation, but it
is not exact. An alternative is to use an integration with where pbot(x, y, t) 5 p(x, y, abot , t), and the pressure at
respect to z, which follows the spirit of the Bryan–Cox the top of the fluid is assumed to be zero. The relation
class of models. In this case one uses a multiple of eztop

zbot pa 5 2ga21za implies that this vertical average is weighted
u dz 5 eatop

abot uza da 5 eatop
abot u(2a/g) pa da. The second according to mass. The velocity field u will be regarded as

equality follows from the relation pa 5 2ga21za , which is the barotropic velocity field, and the baroclinic velocity
equivalent to the hydrostatic condition pz 5 2ga21. The field is the quantity u9 defined by
linearization of the last integral is eatop

abot u(2a/g) p̃a da ; in
this case, one is approximating f(0) with a linear function u9(x, y, a, t) 5 u(x, y, a, t) 2 u(x, y, t). (2.9b)
of a. This approximation is also inexact.

If an inexact projection is used to split the dynamics into This definition implies eatop
abot u9pa da 5 0.
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Bleck and Smith split the pressure field by defining t), integrate (2.8c) over the interval abot # a # atop , and
use the definition (2.9a) of u to obtain (­pbot/­t) 1
= ? ( pbotu) 5 0. Now insert the splitting pbot 5 (1 1 h)p(x, y, a, t) 5 (1 1 h(x, y, t)) p9(x, y, a, t). (2.10)
p9bot; in the time derivative, use the assumption that ­p9/
­t can be neglected when a 5 abot , and in the divergenceHere, the function p9 is intended to represent the pressure
term delete the factor 1 1 h, since the magnitude of h isfield due to static effects and internal motions, and h is a
typically small. The result isdimensionless quantity that captures the fast external sig-

nal. If one assumes p 5 p9 5 0 when a 5 atop , then Eq.
(2.10) is equivalent to pa 5 (1 1 h) p9a. Equation (2.10) p9botht 1 = ? ( p9botu) 5 0. (2.13)
then states that an external signal causes the thickness of
each fluid layer to change by the same proportion. This

This will be regarded as the barotropic continuity equation,statement is approximately valid, but it is not exact. Typi-
since it can be used to advance the barotropic variable hcally uhu ! 1.
with respect to time.In subsequent calculations it is assumed that p9(x, y,

We next need an equation for advancing p9 in time, andabot , t) is independent of t. In the linearized case, free-
this will be regarded as a baroclinic continuity equation.surface perturbations due to internal motions are small,
Insert the splitting p 5 (1 1 h) p9 into (2.8c) to obtainand undulations of surfaces of constant density within the

fluid cause little variation in bottom pressure due to the
small density contrasts between layers. There is thus some (1 1h) p9at 1 p9aht 1 = ? (u(1 1 h) p9a) 5 0.
justification to neglecting time variations in p9(x, y, abot ,
t), and we will denote p9(x, y, abot , t) by p9bot(x, y).

Now delete the quantity 1 1 h whenever it appears as a
The momentum equation (2.8a) is split as follows. The

factor, and use the expression for ht in (2.13) to obtain
vertically averaged velocity u is assumed to satisfy the two-
dimensional equation

p9at 1 = ? (u9 p9a) 5 2= ? (u p9a) 1
p9a

p9bot
= ? ( p9botu). (2.14)

ut 1 f k 3 u 5 2a0=( p9both) 1 u*t ; (2.11)

this equation is the barotropic momentum equation. This
equation can be regarded as a vertical average of the three- This completes the derivation of the splitting. The baro-
dimensional momentum equation (2.8a). The term 2a0= tropic equations are (2.11) and (2.13), and the baroclinic
( p9both) can be interpreted as an approximation to the equations are (2.12) and (2.14).
vertical average of 2=M; the parameter a0 is supposed to
be a representative value of a. The quantity u*t serves as 3. THE CASE OF TWO LAYERS AND ONE
an error term in the splitting and includes the vertical HORIZONTAL DIMENSION
average of the nonlinear terms in (2.8a). More precisely,
if the error in representing the external dynamics is q(x, We now specialize the splitting described in Section 2.3
y, t), then u* is defined by u*(x, y, t) 5 et

t0 q(x, y, t) dt. to the case of a linearized flow in one horizontal dimension
The baroclinic part of the momentum equation is obtained in a fluid with two layers. In the present section, we discre-
by subtracting (2.11) from (2.8a) to yield tize in the vertical direction, but x and t remain continuous.

Discretizations with respect to x and t will be described in
(u9 1 u*)t 1 (u ? =)u 1 f k 3 u9 5 2=M 9, (2.12a) Sections 4 and 5 for purposes of stability analysis.

Suppose that the system of Bleck and Smith is linearized
where about a state where h 5 0, the velocity is zero, and the

pressure is given by a function p̃(a). Also suppose that the
bottom of the fluid corresponds to fixed a 5 abot , the flowM 9(x, y, a, t) 5 M(x, y, a, t) 2 a0 p9bot(x, y)h(x, y, t).
is one-dimensional, and f 5 0. In the pressure splitting(2.12b)
(2.10), let p and p9 denote perturbations in the total pres-
sure and baroclinic pressure, respectively. The splittingThe condition eatop

abot u9 pa da 5 0 is enforced at each time
(2.10) can then be written in the form p̃(a) 1 p 5 (1 1step; in general, this generates a nonzero increment in the
h)( p̃(a) 1 p9). Now neglect the product of h and p9, sincequantity u*, which is then transferred to the barotropic
each is small. The linearization of the splitting (2.10) is thenmomentum equation (2.11) as a forcing term.

We next consider a splitting of the continuity equation
(2.8c). Assume that abot and atop are independent of (x, y, p 5 p9 1hp̃(a). (3.1)
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A calculation shows that the linearization of the Bleck–
Smith system (2.11)–(2.14) is

­u
­t

5 2a0 p̃(abot)
­h
­x

1
­u*
­t

(3.2a)

­h
­t

1
­u
­x

5 0 (3.2b) FIG. 3.1. Vertical discretization. In this diagram the horizontal and
vertical directions correspond to x and a, respectively. The solid lines
indicate boundaries of layers. The locations of the symbols p0 , u91 ,­

­t
(u9 1 u*) 5 2

­M 9

­x
(3.2c) M 91 , ..., specify the vertical locations of grid points where these quantities

are defined.

­

­t S­p9

­aD1 S­p̃
­aD ­u9

­x
5 0 (3.2d)

see Fig. 3.1. Subscripts are placed on variables to denote
the vertical position.

­M 9

­a
5 p 5 p9 1 hp̃(a). (3.2e)

The baroclinic continuity equation (3.2d) involves deriv-
atives with respect to a. If these derivatives are approxi-
mated with second-order centered finite differences, thenIn the present section we do not denote differentiations
equation (3.2d) can be approximated by the equationby subscripts, as subscripts will be used as part of the

notation to describe discretizations. The quantities u, h,
and u* depend on (x, t), and the quantities u9, p9, and M 9 ­

­t
(D p9r ) 1 (Dp̃r)

­u9r

­x
5 0 (3.5)depend on (x, a, t). The quantity M 9 is defined in terms

of the perturbation M in the Montgomery potential by
the relation for r 5 1 and r 5 2. Here Dp9r 5 p9r 2 p9r21 and Dp̃r 5

p̃r 2 p̃r21 ; these quantities denote pressure increments
across the rth layer. The quantity u9r is the baroclinic veloc-M 9 5 M 2 a0 p̃(abot)h, (3.3)
ity in the rth layer.

As noted in Section 2.3, the condition eatop
abot u9 pa da 5

which is a linearization of (2.12b). The first two equations 0 is enforced at each time step. In the present context, the
in (3.2) are the barotropic equations, the next two are the linearized relation eatop

abot u9 dp̃ 5 0 can be approximated by
baroclinic equations, and the last is a linearization of the the relation
hydrostatic relation (2.8b). The boundary conditions at the
top and bottom of the fluid are

u91 Dp̃1 1 u92 Dp̃2 5 0. (3.6)

p 5 p9 5 0 if a 5 atop (3.4a) Now sum Eq. (3.5) over both layers and apply (3.6). The
result is that p92 5 Dp91 1 Dp92 is independent of time; thisM 5 ap if a 5 abot . (3.4b)
is consistent with the assumption made in Section 2.3 that
p9bot is independent of t. If Dp91 is known, then Dp92 is deter-

(See (2.3) and (2.10).) The second condition can be ex- mined automatically. Similarly, relation (3.6) implies that
pressed in terms of M 9 by using (3.3). u92 can also be eliminated from the analysis. We will ulti-

mately consider the baroclinic momentum and continuity
3.1. Vertical Discretization equations in the top layer only.

The condition (3.2e), ­M 9/­a 5 p, can be discretized toNow discretize the above system with respect to the
yield the interface conditionvertical (a) direction. Divide the interval abot # a # atop

into two subintervals of length Da. Fluid flows along sur-
M 91 5 M 92 1 (Da)p1 (3.7)faces of constant density, in the present model, so this

vertical discretization amounts to dividing the fluid into
two immiscible layers. In the finite difference formulation between the layers. The bottom boundary condition (3.4b)

can be implemented as follows. Values of pressure arethat follows, we use centered differences defined relative
to a staggered grid. Values of p, p9, and p̃ are associated defined at grid points lying along the bottom of the lower

layer, but values of M and M 9 are defined at points locatedwith grid points located on boundaries of layers, and values
of u9, M 9, and M are associated with midpoints of layers; in the middle of that layer. Let a2 5 abot 1 Da/2; this is
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the value of a associated with the middle of the lower
p̃2

­u*
­t

5 2
­

­x
(Dp̃1M 91 1 Dp̃2M 92).layer. A Taylor expansion with respect to a yields

The interface condition (3.7) then yieldsM(x, a2 , t) 5 abot pbot 1 (Da/2)(­M/­a) 1 O(Da)2

5 (abot 1 Da/2)pbot 1 O(Da)2.
­u*
­t

5 2
­

­x SM 92 1
Dp̃1

p̃2

p1 DaD . (3.10)
The last equality relies on the relation ­M/­a 5 p. (See
(3.2e) and (3.3).) The bottom boundary condition (3.4b)

Now insert this expression for ­u*/­t back into the momen-can therefore be approximated by M2 5 a2 pbot 5 a2 p2 .
tum equation (3.9) for r 5 1 to obtainThe relations (3.1) and (3.3) then yield M 92 5 a2 p92 1

(a2 2 a0)p̃2h. For the sake of simplicity, we choose a0 5
a2 . The bottom boundary condition is then ­u91

­t
5 2

Dp̃2

p̃2

(Da)
­p1

­x
. (3.11)

M 92 5 a2 p92 . (3.8)
The pressure splitting (3.1) and the top boundary condition
(3.4a) imply p1 5 Dp1 5 Dp91 1 hDp̃1 . This can be insertedAs observed earlier, p92 is independent of t, so M 92 is deter-
into (3.11) to give an alternate form of the baroclinic mo-mined by the initial data.
mentum equation for the upper layer. When this form isThe preceding discussion has been concerned with finite
combined with the baroclinic continuity equation (3.5) withdifference approximations in the vertical direction for a
r 5 1, the result is the systemcontinuously stratified fluid. One can also develop these

ideas in the context of a discretely stratified fluid consisting
of two homogeneous layers having constant specific vol- ­

­t SDp91

u91
D 1 S 0 Dp̃1

(Dp̃2)(Da)/p̃2 0
D ­

­x SDp91

u91
D

(3.12)

umes a1 and a2 . For example, the hydrostatic assumption
implies that the Montgomery potential is independent of
depth in a region of constant density; continuity of position
and pressure across an interface then implies that the jump 5S 0

2(Dp̃1 Dp̃2 Da/p̃2)(­h/­x)
D .

condition (3.7) is exact in the discrete case. It can be veri-
fied that the other preceding approximations for a continu-
ously stratified fluid are exact conditions for a discretely The vector on the right side of (3.12) can be regarded as
stratified fluid. a forcing term.

The wave velocities for the system (3.12) are given by
3.2. Baroclinic System the eigenvalues of the coefficient matrix of the x-derivative.

These eigenvalues are 6c1 , whereIn this subsection we formulate in detail the baroclinic
equations for a two-layer model. For reasons given earlier,

c1 5 Ï(Dp̃1)(Dp̃2)(Da)/p̃2 . (3.13)it suffices to consider baroclinic equations for the upper
layer only. The baroclinic continuity equation can be taken

This quantity is the speed of internal waves in a fluid withto be Eq. (3.5) with r 5 1. We now obtain an explicit form
two layers, under the present model. The baroclinic systemof the momentum equation.
(3.12) can then be written in the formThe baroclinic momentum equation (3.2c) for layer r

can be written in the form
­

­t SDp91

Dp̃1
D1 c1

­

­x Su91

c1
D5 0 (3.14a)

­

­t
(u9r 1 u*) 5 2

­M 9r

­x
. (3.9)

­

­t Su91

c1
D1 c1

­

­x SDp91

Dp̃1
D5 2c1

­h
­x

, (3.14b)
Here, r 5 1 or r 5 2. The quantity u* is included in order
to make it possible for the vertical mean of u9 to be zero

in which the dependent variables are nondimensional.at all times; for the case of two layers, this condition is
expressed by Eq. (3.6). We now use this property to identify

3.3. Barotropic System
­u*/­t and eliminate it from (3.9).

Multiply (3.9) by Dp̃r , sum over r, and use (3.6) and the We now describe the barotropic equations (3.2a)–(3.2b)
in greater detail, especially in relation to the two-layerrelation p̃2 5 Dp̃1 1 Dp̃2 to obtain
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baroclinic system of Section 3.2. The barotropic momen- ity that could aggravate any such effects of the splitting.
Of all the possible discretizations that have this property,tum equation (3.2a) contains a forcing term ­u*/­t. In the

formulation used by Bleck and Smith [2], the baroclinic the present forward–backward scheme is perhaps the sim-
plest to analyze. Some alternate discretizations are dis-equations (2.12) and (2.14) are solved over the time interval

tn # t # tn11 before the barotropic equations are solved over cussed in Section 5.
Our ultimate goal is to perform a von Neumann stabilitythat time interval. The solution of the baroclinic equations

yields a time increment Dn11u* in the quantity u*, and the analysis of the algorithm. (See, e.g., Richtmyer and Morton
[17].) For this kind of analysis, assume that the system isforcing term ­u*/­t is then approximated by the constant

Dn11u*/Dt for tn # t # tn11 . (Here Dt 5 tn11 2 tn). After defined for 2y , x , y and t . 0. Apply a Fourier
transform with respect to x, and express the transformedthis approximation is made, the barotropic equations have

the form solution at time tn11 5 (n 1 1)Dt in terms of the transformed
solution at time tn 5 n Dt. Here, Dt is the time step that
is used when solving the slow baroclinic equations. If there
exist solutions of the system that are unbounded as the­

­t Su

h
D1S0 a2 p̃2

1 0
D ­

­x Su

h
D5SDn11u*/Dt

0
D (3.15)

time index tends to infinity, then the algorithm is unstable;
otherwise, the algorithm is stable.

for tn # t # tn11 . Here, we use p̃(abot) 5 p̃2 and a0 5 a2 , In the following discussion, the barotropic system (3.15)
as described in Section 3.1. is discretized with respect to x but is solved exactly with

The system (3.15) has the form of the one-dimensional respect to t over each time interval tn # t # tn11 . We use the
shallow water equations with a forcing term (Pedlosky exact solution with respect to t partly in order to simplify
[14]). The characteristic velocities are equal to the eigen- calculations, but mainly so that the analysis cannot be
values 6c0 , where affected by errors arising from a numerical method for

integrating the barotropic equations with respect to t; the
main issues here are the nature of the splitting and thec0 5 Ïa2 p̃2 . (3.16)
fact that the baroclinic equations are advanced explicitly
with long time steps.This quantity is the speed of external gravity waves, as

represented by the model (3.15) of external motions.
A comparison with (3.13) shows that in the case of a 4.1. Matrix Form of the Algorithm

fluid with two layers, the internal wave speed c1 and the
In this subsection we discretize the system (3.14)–(3.15)external wave speed c0 are related by

and express the result in matrix–vector form for the sake
of later analysis.

In the baroclinic continuity equation (3.14a), we use aSc1

c0
D2

5 SDp̃1

p̃2
DSDp̃2

p̃2
DSDa

a2
D . (3.17)

forward time difference to express Dp91 at time tn11 in terms
of data at time tn . We then apply a backward time differ-
ence to the baroclinic momentum equation (3.14b) to ob-For example, if Dp̃1/p̃2 5 0.25, Dp̃2/p̃2 5 0.75, and
tain u91 at time tn11 . For a space discretization, we useDa/a2 5 0.01, then c1/c0 P 0.043. Equation (3.17) is an
centered second-order finite differences on a staggeredanalogue of a relation derived by Gill [9] for a two-layer
grid. Values of h and Dp91 are defined at points with spacingfluid when the vertical coordinate is z instead of a. The
Dx, and grid points for u and u91 are located halfway be-relations (3.13), (3.16), and (3.17) will be used in various
tween the points for h and Dp91 . The resulting algorithmnondimensionalizations later.
can be expressed in the form

4. STABILITY ANALYSIS

We next discretize the system (3.14)–(3.15) with respect (Dp̂91)n11

Dp̃1

5
(Dp̂91)n

Dp̃1

2 (c1D)
(û91)n

c1
(4.1a)

to x and t and analyze the stability of the resulting algo-
rithm. In the present section the baroclinic system (3.14) is
discretized with a forward–backward time stepping scheme (û91)n11

c1
5

(û91)n

c1
2 (c1D)

(Dp̂91)n11

Dp̃1

2 (c1D)ĥn. (4.1b)and with centered spatial differences on a staggered grid.
This discretization is chosen so that the algorithm is stable
and nondissipative when the coupling to the barotropic
system (3.15) is removed. With this formulation, there is Here (Dp̂91)n 5 (Dp̂91)n(k), (û91)n 5 (û91)n(k), and ĥn 5 ĥn(k)

denote the Fourier transforms of Dp91 , u91 , and h with re-no inherent dissipation to mask any destabilizing effects
of the operator splitting, nor is there an underlying instabil- spect to x at time tn , with k being the dual variable for the
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Fourier transform. The action of the spatial differencing The terms in (4.4a) that involve Y(t 2 tn) are solutions of
the homogeneous analogue of (4.3). The updated valuesis represented by the quantity
û n11 and ĥn11 are then obtained by letting t 2 tn 5 Dt in
(4.4a)–(4.4b). The final result is

D 5 D(k) 5
Dt
Dx

(eikDx/2 2 e2ikDx/2). (4.2)

In the formulation of Bleck and Smith [2], the baroclinic Sû n11/c0

ĥn11 D5 Y(Dt) Sû n/c0

ĥn D
(4.5a)equations are updated before the barotropic equations; in

the difference scheme (4.1), one would then use hn, since
hn11 is not yet available. An alternative to the time-stepping 1 (I 2 Y(Dt)) S 0

Dn11û*/(c2
0D)
D ,

in (4.1) is to update u91 first and then update Dp91 . In some
experiments reported later, this change had no effect on
stability. We use the order of updating in (4.1) because in where
the nonlinear analogue it would be natural to update p9
first, since one might want the factors in the divergence
term = ? (up9a) in (2.14) to be evaluated at the same time

Y(Dt) 5 V Se2c0D 0

0 ec0DD V21. (4.5b)level.
Next consider the barotropic system (3.15). After a Fou-

rier transform is applied with respect to x, the system can
We next obtain an explicit representation for the termbe written in the form

Dn11û*/(c2
0D) in (4.5). A comparison of (3.10) and the

linearized pressure splitting (3.1) yields
­

­tSû (k, t)/c0

ĥ(k, t)
D5 BSû /c0

ĥ
D1SDn11û*/(c0 Dt)

0
D, (4.3a)

­u*
­t

5 2 SDp̃1

p̃2
D (Da)

­

­x
(Dp91 1 (Dp̃1)h) 2

­M 92

­x
.

where

In the method of Bleck and Smith [2], a time increment
B 5

2c0D
Dt S0 1

1 0
D , (4.3b) in the quantity u* is obtained by updating the baroclinic

momentum equation (2.12) or (3.9) in each layer and then
enforcing the requirement that the values of the baroclinic

and c0 is given by (3.16). The eigenvalues of B are 2c0D/ velocity u9 have vertical mean zero. In the time stepping
Dt and c0D/Dt; corresponding eigenvectors are (1, 1)T and described in (4.1), the update of baroclinic velocity involves
(1, 21)T, respectively. The solution of (4.3) that satisfies the quantities (Dp̂91)n11 and ĥn, so we use
the initial conditions û (k, tn) 5 û n(k) and ĥ(k, tn) 5
ĥn(k) is

Dn11û* 5 2 SDp̃1

p̃2
D (Da)D((Dp̂91)n11 1 (Dp̃1)ĥn) 2 DM̂ 92.

Sû (k, t)/c0

ĥ(k, t)
D5 Y(t 2 tn) Sû n(k)/c0

ĥn(k)
D

(4.4a)
(4.6)

An alternate derivation is to apply the forward–backward
1 (I 2 Y(t 2 tn)) S 0

Dn11û*/(c2
0D)
D , time stepping used in (4.1) to the baroclinic momentum

equation (3.9) and baroclinic continuity equation (3.5) inwhere
each layer and then impose condition (3.6). A calculation
similar to the derivation of (3.10) then yields Eq. (4.6). A
comparison with the velocity relations (3.16)–(3.17) pro-

Y(t 2 tn) 5 V Se(2c0D/Dt)(t2tn) 0

0 e(c0D/Dt)(t2tn)D V 21, (4.4b) duces

with Dn11û*
(c2

0D)
5 2 SDp̃1

Dp̃2
DSc1

c0
D2F(Dp̂91)n11

Dp̃1

1 ĥnG2 SM̂ 92

c2
0
D . (4.7)

V 5S1 1

1 21
D . (4.4c)

The last term on the right side is independent of n.
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We now combine the discrete equations (4.1), (4.5), and In this case, the algorithm has the form
(4.7) into a single vector equation. Let

B1wn11 5 B0wn, (4.10a)

vn(k) 5 S(Dp̂91)n

Dp̃1

(û91)n

c1

û n

c0
ĥnDT

(4.8a) where

denote a column vector of unknowns, and let B1 5S 1 0

c1D 1
D , B0 5S1 2c1D

0 1
D . (4.10b)

Z(Dt) 5 SDp̃1

Dp̃2
D Sc1

c0
D2

(I 2 Y(Dt)). (4.8b)
The matrices B1 and B0 depend on the wavenumber k,
since D depends on k (cf. (4.2)). If there exists a k that
yields a solution of (4.10) that is unbounded as n increases,Equations (4.1), (4.5), and (4.7) can then be written in
then the algorithm is unstable, in the von Neumann sense;the form
otherwise, the algorithm is stable (Richtmyer and Mor-
ton [17]).E1vn11 5 E0vn 1 F(k), (4.9a)

PROPOSITION 4.1. The algorithm (4.10) is stable if
where c1 Dt/Dx , 1.

Proof. We begin by seeking solutions of the form
wn 5 lnq, where l is a complex scalar and q is a nonzero
vector. The superscript on l is an exponent, and the super-
script on w is a time index. A form wn 5 lnq satisfies theE1 51

1 0 0 0

c1D 1 0 0

Z12 0 1 0

Z22 0 0 1
2 ,

(4.9b)

difference equation (4.10) if and only if lB1q 5 B0q. This
condition, together with the constraint q ? 0, will be re-
garded as an eigenvalue problem with eigenvalue l. A
number l is an eigenvalue if and only if det(lB1 2 B0) 5
0, or

l2 2 al 1 1 5 0, (4.11a)E0 51
1 2c1D 0 0

0 1 0 2c1D

0 0 Y11 Y12 2 Z12

0 0 Y21 Y22 2 Z22

2 ,

where

and F(k) is a forcing term that involves initial data and is a 5 2 1 c2
1D2 5 2 1 Sc1 Dt

Dx D2

(eikDx 2 2 1 e2ikDx). (4.11b)
independent of n.

4.2. Analysis of the Purely Baroclinic System If c1 Dt/Dx , 1, then 22 , a # 2. If 22 , a , 2, then
the roots of (4.11a) have nonzero imaginary parts; since aWe now show that if the preceding algorithm is restricted
is real, the roots are complex conjugates. Denote theseto the equations that are intended to model the slow mo-
roots by l1 and l2 5 l1 . In (4.11a), the coefficient of l2 istions, without any forcing from the rest of the system, then
1, so the product of the roots is equal to the constant term.the algorithm is stable and nondissipative, provided that
Thus 1 5 l1l2 5 l1l1 5 ul1u2 5 ul2u2. The eigenvalues l1the Courant–Friedrichs–Lewy condition c1 Dt/Dx , 1 is
and l2 are distinct, so corresponding eigenvectors q1 andsatisfied. However, in Section 4.3 we show that the method
q2 must be linearly independent. It then follows that everyis unstable when both barotropic and baroclinic motions
solution of (4.10) can be written as a linear combinationare present. This instability is apparently due to the inex-
of ln

1q1 and ln
2q2 . Since ul1u 5 ul2u 5 1, each of theseactness of the operator splitting used here.

solutions is bounded as n increases. In the remaining caseWe examine the case of slow motions as follows. In the
a 5 2, a comparison with (4.11b) shows that D 5 0; it thenbaroclinic equations (4.1), suppose that the forcing term
follows from (4.10) that wn11 5 wn for all n. Therefore,h is identically zero, and let
for each k, all solutions of the difference equation (4.10)
are bounded, and the algorithm is stable. This completes
the proof.

wn(k) 5S(Dp̂91)n/Dp̃1

(û91)n/c1

D .
Since ul1u 5 ul2u 5 1 when 22 , a , 2, each of the
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terms ln
1q1 and ln

2q2 maintains a constant amplitude as n
increases. In this sense, the algorithm (4.10) is nondissi-
pative.

4.3. Analysis of the Coupled Barotropic–Baroclinic
System

We now examine the general algorithm (4.9). In the
following proof of instability, it suffices to examine the
corresponding homogeneous system E1vn11 5 E0vn. The

FIG. 4.1. Plots of eigenvalues versus wavenumber. Here we considermatrices E1 and E0 depend on k, since D depends on k.
a two-layer model for which Dp̃1/p̃2 5 0.25, Dp̃2/p̃2 5 0.75, Da/a2 5 0.01,If there exists k for which the homogeneous system
and c1 Dt/Dx 5 0.8. The solid curve shows the maximum of the absoluteE1vn11 5 E0vn has solutions that are unbounded as n in-
values of the eigenvalues of the problem (4.12) corresponding to the

creases, then the algorithm is unstable. algorithm (4.9). The maximum moduli are plotted as a function of the
Again, we begin by seeking solutions of the form vn 5 dimensionless wavenumber k Dx. The dotted curve is a graph of the

lower bound in (4.14). Instability follows from the fact that there existlnq, where now q is a vector having four components. This
eigenvalues having modulus greater than 1.form is a nontrivial solution of the homogeneous system

if and only if l and q satisfy the eigenvalue problem

lE1q 5 E0q, q ? 0. (4.12) PROPOSITION 4.2. The algorithm (4.9) is unstable, for
any value of the Courant number c1 Dt/Dx. Furthermore,

A number l is an eigenvalue if and only if det(lE1 2 E0) for each k let maxul(k)u denote the maximum of the absolute
5 0. A calculation shows that this condition is equivalent to values of the eigenvalues of (4.12). Then

(l2 2 al 1 1)(l2 2 bl 1 1) 1 d(k)(l 1 1)(l 2 1)2 5 0, maxul(k)u $ (1 1 d(k))1/4 5 1

(4.14)
(4.13a)

1
1
4 SDa

a2
D S(k) 1 O SDa

a2
D2

where a is defined in (4.11b), b 5 exp(2c0D) 1
exp(c0D), and

for all k.

Proof. In the characteristic polynomial on the left sided(k) 5 SDp̃1

Dp̃2
DSc1

c0
D2 F1 2

1
2

(e2c0D 1 ec0D)G
of (4.13a), the coefficient of l4 is 1, so the product of the
eigenvalues is equal to the constant term 1 1 d(k). If the
eigenvalues are denoted by li for 1 # i # 4, then5 SDa

a2
DSDp̃1

p̃2
D2 F1 2 cos S2

c0 Dt
Dx

sin(k Dx/2)DG
(maxul(k)u)4 $ ul1l2l3l4u 5 1 1 d(k). Thus maxul(k)u $
(1 1 d(k))1/4 5 1 1 d(k)/4 1 O(d(k))2. The relation (4.14)
is thus established. The quantity (1 1 d(k))1/4 is strictly; SDa

a2
D S(k). (4.13b)

greater than 1 for almost all k; for any such k there there-
fore exists an eigenvalue l such that ulu . 1. This implies
that there exist solutions of the homogeneous system thatEquations (4.13a)–(4.13b) were obtained with the aid of

the computer algebra systems Maple V and Mathematica. have the form lnq with ulu . 1 and q ? 0. Such solutions
grow exponentially as functions of the time index n, so theDuring independent calculations, the two systems yielded

the same results. The relations in (4.13b) rely on Eqs. (3.17) algorithm (4.9) is unstable. This completes the proof.
An example of the behavior of the eigenvalues is illus-and (4.2), and the last equality in (4.13b) contains the

definition of an oscillatory function S(k). trated in Fig. 4.1. In this example, we consider a two-layer
model for which Dp̃1/p̃2 5 0.25, Dp̃2/p̃2 5 0.75, andThe characteristic polynomial on the left side of (4.13a)

will be regarded as a small perturbation of the simpler Da/a2 5 0.01; and we assume that Dt and Dx are chosen so
that the Courant number is c1 Dt/Dx 5 0.8. We consideredpolynomial (l2 2 al 1 1)(l2 2 bl 1 1), since the factor

Da/a2 in d(k) is typically small. The factor S(k) in d(k) is values of k Dx varying from 2f to f in increments of f/
1600, and for each such k Dx we computed the maximumalways nonnegative and oscillates between a minimum of

0 and a maximum of 2(Dp̃1/p̃2)2. Due to periodicity, the of the absolute values of the eigenvalues of (4.12). We
then plotted these maximum moduli as functions of k Dx.problem (4.13) can be restricted to the interval 2f ,

k Dx # f. The instability of the algorithm is evident from the figure.
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The eigenvalues were computed and plotted with the nu- 2.2. The pressure splitting (2.10) also assumes that the
external motions are independent of depth. Anothermerical software package Matlab.

The dotted curve in Fig. 4.1 is a plot of the lower bound source of inexactness in the splitting is the gradient term
2a0=( p9both) in the barotropic momentum equation (2.11);given on the right side of the inequality in (4.14). This

lower bound is considerably less than the actual absolute in effect, this represents an approximation to the vertical
average of the term 2=M in the three-dimensional mo-values of the eigenvalues in some cases, and it appears to

have about half the amplitude of the oscillations of the mentum equation (2.8a).
actual eigenvalues near k 5 0. The discrepancy near k 5

4.4. Discussion of the Perturbations of Roots0 can be explained as follows. Suppose that two of the
eigenvalues have absolute values less than or equal to 1; The lower bound in (4.14) does not explain the relatively
this is the case in the present example, and it has been the large values of ulu seen near the ends of the interval
case in numerous other examples that we tested. Denote uk Dxu # f. We now sketch how it is possible for eigen-
these eigenvalues by l3 and l4 . The proof of values to have magnitude 1 1 O(Ïd(k)), not just 1 1
inequality (4.14) can then be modified to yield (maxul(k)u)2

O(d(k)). The characteristic polynomial on the left side
$ ul1l2u $ ul1l2l3l4u 5 1 1 d(k), so maxul(k)u $ of (4.13a) is a perturbation of the polynomial
(1 1 d(k))1/2 5 1 1 d(k)/2 1 O(k))2. In practice, the
quantity (1 1 d(k))1/2 may be a valid lower bound for the

r(l) 5 (l2 2 al 1 1)(l2 2 bl 1 1).growth rate.
The preceding discussion implies that maxul(k)u is

We begin by examining the roots of r and then considerbounded below by a rapidly oscillating function of k. In
the effects of the perturbation.particular, as uk Dxu varies from zero, maxul(k)u must move

If c1 Dt/Dx , 1, then 22 , a # 2, as observed in thequickly from 1 to values that are greater than 1. The first
proof of Proposition 4.1. The roots of the factor (l2 2maximum of the lower bound occurs when 2(c0 Dt/Dx)
al 1 1) thus lie on the unit circle. The factor (l2 2 al 1sin(k Dx/2) 5 f, or sin(k Dx/2) 5 (f/2n))(c1/c0) 5
1) is the characteristic polynomial for the purely baroclinicO(ÏDa/a2), where n 5 c1 Dt/Dx (cf. (3.17)). Since k 5
equations (see (4.11a)), so these roots are associated with2f/L, where L is wavelength, we then have the first maxi-
baroclinic motions. As uk Dxu varies from 0 to f with c1 Dt/mum arising for waves that satisfy Dx/L 5 O(ÏDa/a2).
Dx fixed, the parameter a varies from 2 to 2 2 4(c1 Dt/Such waves are long relative to Dx and thus are resolved
Dx)2, so the roots move in opposite directions around thewell by the grid; for example, with the parameters used in
unit circle from 1 toward 21.Fig. 4.1, the first maximum corresponds to approximately

The parameter b in (4.13a) satisfies ubu # 2 for all k and37 grid intervals per wavelength. If one wishes to stabilize
for all values of c1 Dt/Dx. The roots of the factor (l2 2this algorithm via dissipation and/or filtering processes,
bl 1 1) thus lie on the unit circle. The parameter b canthen apparently these processes must be designed to have
be written in the formsignificant action on waves that are resolved well by the

grid, not just on the very short waves that are typically
regarded as numerical artifacts. But the well-resolved b 5 2 cos S2 Sc0

c1
DSc1 Dt

Dx D sin(k Dx/2)D .
waves would presumably be part of the dynamics that one
is trying to model. Dissipation and/or filtering would thus
amount to overriding the solution of the partial differential If c0/c1 @ 1, as is typical, then the value of b oscillates

rapidly as uk Dxu varies from 0 to f, and the correspondingequations in a manner that is not necessarily based on
model physics. roots of (l2 2 bl 1 1) move around the unit circle several

times. If such a root is written in the form l 5 exp(ig Dt),In the discretization of the baroclinic equations in (4.1),
the continuity equation was used to update Dp̂91 , and then then the time dependence in the corresponding mode in

the solution of the partial differential equations is ln 5the momentum equation was used to update u91 . Some
additional experiments were performed in which the baro- exp(igtn). The argument of l is thus proportional to fre-

quency, and the rapid movement of the root implies thatclinic equations were updated in reverse order. For various
choices of parameters, the plots of absolute values of eigen- g is a rapidly changing function of k. This implies large

wave velocities, so the roots of (l2 2 bl 1 1) can bevalues versus wavenumber were essentially the same as
those obtained with the time stepping in (4.1). associated with barotropic motions.

The roots of the polynomial r can thus be divided intoOne source of the instability discussed in this section
may be the vertical average that is used to obtain the two pairs. One pair moves slowly around a portion of the

unit circle as k Dx is varied, and the other pair movesbarotropic velocity u. This average assumes, in effect, that
the external motions are independent of depth; this is a around the circle repeatedly. We will regard these roots

as baroclinic roots and barotropic roots, respectively. Forgood approximation but is not exact, as discussed in Section
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isks represent results from two predictor–corrector algo-
rithms that are discussed in Section 5.2). In this plot, the
horizontal axis represents values of Da/a2 , and the vertical
axis corresponds to the maximum absolute values of eigen-
values. It was shown above that the maximum absolute
value of the eigenvalues for fixed k could be as large as
1 1 O(Ïd(k)). If one then computes the maximum abso-
lute value of eigenvalues over all k, it is then possible to
have a maximum of 1 1 O(ÏDa/a2). The pattern of circles
in Fig. 4.2 suggests that this square root dependence may
actually occur in the example considered here.

The baroclinic and barotropic roots coincide when the
values of the parameters a and b in (4.13a) coincide. A
plot of a and b as functions of k Dx (not shown here)
reveals that the values of k Dx for which a 5 b are precisely
those values corresponding to the sharp spikes in Fig. 4.1.
This is to be expected, according to the preceding dis-
cussion.FIG. 4.2. Growth rates as a function of Da/a2 . Here we assume Dp̃1/

When the barotropic and baroclinic roots coincide, thep̃2 5 0.25, Dp̃2/p̃2 5 0.75, and c1 Dt/Dx 5 0.8. Each point illustrates the
maximum of the absolute values of the eigenvalues over all k Dx, for barotropic and baroclinic modes have the same time de-
some numerical method and some value of Da/a2 . Circles correspond pendence, when viewed on the coarse time grid that is used
to the algorithm (4.9), which is based on a forward–backward time step- to solve the baroclinic equations. However, the barotropic
ping for the baroclinic equations. The crosses and asterisks correspond

motions generally oscillate more rapidly than do the baro-to two predictor–corrector schemes described in Section 5.2.
clinic motions, so the present phenomenon is an example
of aliasing. When this aliasing occurs, the effect of the
inexactness of the operator splitting is exaggerated, as cancertain values of k Dx and the other parameters, the two

pairs of roots coincide, and the characteristic polynomial be seen from the spikes in Fig. 4.1. This can be regarded
as a kind of resonance; it is not a resonance in the physicalon left side of (4.13a) is thus a perturbation of a polynomial

having two double roots. Otherwise, the characteristic system, but rather a resonance in the numerical algorithm.
polynomial is a perturbation of a polynomial having four
distinct roots. If r happens to have distinct roots, then a
calculation shows that the roots are perturbed by an 5. ALTERNATE TIME DISCRETIZATIONS
amount having magnitude O(d). However, in the case of

The preceding section was concerned with the stabilitydouble roots, the perturbation has magnitude O(Ïd). The
of the one-dimensional split system (3.14)–(3.15) when aabsolute value of the perturbed root is also influenced by
forward–backward time stepping scheme is applied to thethe direction of the perturbation. A geometrical argument
baroclinic equations. We now discuss the stability of abased on the law of cosines shows that if the magnitude
leapfrog method and two different predictor–correctorof the perturbation is O(Ïd) and if the direction of the
methods. Each algorithm is found to be unstable, so theperturbation happens to be tangent to the unit circle, then
stability problem is not caused by a peculiarity of onethe absolute value of the perturbed root is 1 1 O(d);
particular time stepping scheme.otherwise, the perturbed root has magnitude 1 1 O(Ïd).

This kind of perturbation is illustrated by an example
that is graphed in Fig. 4.2. Consider a two-layer model for

5.1. Leapfrog
which Dp̃1/p̃2 5 0.25 and Dp̃2/p̃2 5 0.75, and suppose that
the Courant number is fixed to have the value c1 Dt/Dx 5 Here we apply a leapfrog time stepping scheme to the

baroclinic system (3.14). For a spatial discretization, we0.8. For various values of the density contrast Da/a2 be-
tween the two layers, we computed eigenvalues of (4.12) use centered second-order finite differences on a staggered

grid. Values of h and Dp91 are defined at points with spacingfor values of k Dx varying from 2f to f in increments of
f/400. For each value of Da/a2 , we then determined the 2 Dx, and grid points for u and u91 are located halfway

between the points for h and Dp91 . This is the same spatialmaximum absolute value, over all k, of the eigenvalues
that were computed for that Da/a2 . The results can be discretization as in Section 4, except that a different defini-

tion of Dx is used for notational convenience. The formulasregarded as measures of the maximum possible growth
rates for the various values of Da/a2 . The results are that follow are also valid for an unstaggered grid with

spacing Dx.graphed with the circles in Fig. 4.2. (The crosses and aster-
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The leapfrog approximation to the baroclinic system
(3.14) can be written in the form

(Dp̂91)n11

Dp̃1

5
(Dp̂91)n21

Dp̃1

2 (c1DLF)
(û91)n

c1

(û91)n11

c1
5

(û91)n21

c1
2 (c1DLF)

(Dp̂91)n

Dp̃1

2 (c1DLF)ĥn,

FIG. 5.1. Plots of eigenvalues versus wavenumber, when the baro-
clinic equations are solved with a leapfrog method. Parameters and axeswhere
are the same as in Fig. 4.1.

DLF 5 DLF(k) 5
Dt
Dx

(eikDx 2 e2ikDx)
where

denotes the action of the spatial differencing in the present
case. As in Section 4, we state the algorithm in terms of
Fourier transforms with respect to x. We again assume that
the barotropic equations are solved exactly with respect to

L0 51
0 2c1DLF 0 0

2c1DLF 0 0 2c1DLF

20.5Z12 0 Y11 Y12 2 0.5Z12

20.5Z22 0 Y21 Y22 2 0.5Z22
2 ,t on the time interval tn # t # tn11 .

The barotropic momentum equation (3.2a) contains a
forcing term ­u*/­t that needs to be approximated in the
present setting. If a leapfrog method is applied to the
baroclinic momentum equation (3.9) in each layer, then a

L21 is a diagonal matrix with diagonal entries (1, 1, 0, 0),calculation similar to the derivation of (3.10) and (4.6)
and F(k) is a forcing term that is independent of n. Foryields
purposes of eigenvalue analysis, equation (5.1) can be writ-
ten in single-step form as

Dn11
LF û* 5 2SDp̃1

p̃2
D (Da)DLF((Dp̂91)n 1 (Dp̃1)ĥn) 2 DLFM̂ 92.

Svn11

vn D5SL0 L21

I 0
DS vn

vn21D1SF(k)

0
D

(5.2)Here, the quantity Dn11
LF û* represents an increment in u*

between times tn21 and tn11 . The forcing term ­u*/­t in
; G S vn

vn21D1SF(k)

0
D .the barotropic momentum equation (3.2a) can then be

approximated by Dn11
LF û*/(2 Dt).

The solution (4.4)–(4.5) of the barotropic system can
The last equality contains the definition of an 8 3 8 matrixbe applied to the present situation, provided that minor
G. The matrices L0 and G depend on k, since DLF dependschanges are made. First, the quantity Dn11 û*/(c2

0D) must
on k.be replaced by the quantity Dn11

LF û*/(2c2
0DLF). A calcula-

The stability of the algorithm is governed by the behav-tion similar to the derivation of (4.7) yields
ior of the homogeneous system wn11 5 Gwn, where wn is
a vector having eight components. The problem then re-
duces to studying the eigenvalue problem lq 5 Gq. TheDn11

LF û*
(2c2

0DLF)
5 2

1
2 SDp̃1

Dp̃2
DSc1

c0
D2F(Dp̂91)n

Dp̃1

1 ĥnG2 SM̂ 92

2c2
0
D . characteristic polynomial has degree 8 in this case, whereas

the analysis in Section 4 involves a polynomial of degree
4. The difference is due ultimately to the fact that the

Second, the quantity c0D/Dt must be replaced by c0DLF/ leapfrog method uses three time levels, whereas the for-
2 Dt in Eq. (4.3b) and in the definition of Y(t 2 tn) in (4.4b). ward—backward scheme uses two time levels. Due to the

With these changes in place, let vn(k) and Z(Dt) denote greater complexity of the present case, we do not give an
the quantities defined in (4.8). The present algorithm can analysis here; instead, we restrict the discussion to some
then be written in the form numerical computations of eigenvalues.

Figure 5.1 shows a plot having the same format as Fig.
4.1. In this example, we assume Dp̃1/p̃2 5 0.25, Dp̃2/p̃2 5vn11 5 L0vn 1 L21vn21 1 F(k), (5.1)
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0.75, Da/a2 5 0.01, and c1 Dt/Dx 5 0.8. The vertical coordi-
nate is the maximum absolute value of the eigenvalues
of the matrix G in (5.2), and the horizontal coordinate
represents values of k Dx varying from 2f to f in incre-
ments of f/1600. Plots for a few other values of Da/a2

showed similar behavior. Throughout most portions of the
interval 2f # k Dx # f, the maximum modulus of the
eigenvalues is greater than 1, so the algorithm is unstable.
A comparison with Fig. 4.1 suggests that the average of
maxulu over all k is slightly less for the leapfrog scheme
than for the forward–backward scheme.

5.2. Predictor–Corrector Methods

Here we use the forward–backward algorithm devel-
oped in Section 4.1 to obtain an initial estimate of the
solution at time tn11 , and we then insert the predicted
values into an implicit method for the baroclinic equations
to obtain revised values of Dp91 and u91. We consider two

FIG. 5.2. Plots of eigenvalues versus wavenumber, when predictor–
variations on this theme which use different representa- corrector methods are used to solve the baroclinic equations.
tions of the barotropic forcing on the baroclinic equations.

Let

consistent with the ordering of unknowns in the vectors
in (4.8a) and (5.3). In the following, we do not apply a

vpred(k) 5 S(Dp̂91)pred

Dp̃1

(û91)pred

c1

û pred

c0
ĥpredDT

(5.3) correction step to the barotropic equations, so un11 5 upred

and hn11 5 hpred.
In Eq. (5.5b), the quantity have represents a time average

denote a column vector of predicted values of the depen- of values of h. Here we consider two possibilities for
dent variables. The prediction step is then this average:

(1) Use have 5 (hpred 1 hn)/2.E1vpred 5 E0vn 1 F(k), (5.4)
(2) In the formulation of Bleck and Smith [2], the baro-

where E1 , E0 , and F(k) are defined in (4.9). In this step, tropic equations are solved using many small substeps of
Dp91 is predicted first, and the result is then used when the time interval tn # t # tn11 ; have can then be the average
predicting the baroclinic velocity u91. of the values of h that are computed over all of those

During the correction step, we will use centered differ- substeps. In the present analysis, we have solved the baro-
encing with respect to t, together with a time-averaging of tropic equations exactly with respect to t in order to isolate
dependent variables. We first correct the velocity u91 and the effects of the operator splitting and baroclinic time
then correct Dp91. Some experiments with the reverse or- stepping. In the analysis that follows, we will simulate the
dering yielded unstable methods; the computed eigenval- above averaging by using averages of the exact solution
ues were far larger than the eigenvalues associated with over J substeps of the interval tn # t # tn11 , where J is the
the predictor step alone. The equations that we will use smallest integer that is greater than or equal to c0/c1 .
for the corrector step are

For each averaging scheme, the correction step (5.5) can
be written in matrix–vector form and then combined with
the formulation (5.4) of the prediction step. This process(Dp̂91)n11

Dp̃1

5
(Dp̂91)n

Dp̃1

2
c1D

2 S(û91)n11

c1
1

(û91)n

c1
D (5.5a)

is similar to what was done for other algorithms in Sections
4.1 and 5.1, so we omit the details. Instead, we report the
results of some numerical computations of eigenvalues for(û91)n11

c1
5

(û91)n

c1
2

c1D
2 S(Dp̂91)pred

Dp̃1

1
(Dp̂91)n

Dp̃1
D some examples.

Figure 5.2 shows plots of absolute values of eigenvalues
2 (c1D)ĥave (5.5b) versus k Dx for the two predictor–corrector schemes de-

scribed above. The upper frame shows results with averag-
ing scheme (1), and the lower frame shows results with(cf. (4.1)). The second equation would be implemented

first; the equations are written in this order so as to be averaging scheme (2). In this example, we assume Dp̃1/
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p̃2 5 0.25, Dp̃2/p̃2 5 0.75, Da/a2 5 0.01, and c1 Dt/Dx 5 lope of this graph was essentially a straight line. The graph
was then used to estimate the slope log l and thus l. In0.8. These plots show considerable improvement over the

results from the forward–backward time stepping illus- the cases that yielded relatively rapid growth, the solution
was computed for several thousand time steps. In othertrated in Fig. 4.1. Averaging scheme (2) shows better re-

sults than scheme (1). However, the predictor–corrector examples, it was necessary to compute for tens of thou-
sands of time steps, or more.schemes appear not to be able to improve on the lower

bound (1 1 d(k))1/2 that was discussed after the proof of In the computations described here, the velocities u and
u9 were taken to be sinusoidal at time t 5 0, and theProposition 4.2.

Another example is graphed in Figure 4.2. Each point quantities h and p9 were set equal to zero at t 5 0. Solutions
were computed over a finite interval in x with periodicin the plot represents the maximum, over all k, of the

absolute values of the eigenvalues for some algorithm and boundary conditions. Various wavenumbers in the initial
conditions were tested, and the observed growth rates assome value of Da/a2 . As noted earlier, the small circles

correspond to the forward–backward scheme discussed in n R y were found to be essentially independent of wave-
number. Apparently this was due to the effects of roundoffSection 4. The crosses correspond to the predictor–

corrector method with averaging scheme (1), and the aster- error; over the many time steps used here, roundoff error
would eventually excite the mode having the greatestisks correspond to the predictor–corrector method with

averaging scheme (2). The figure suggests that the second growth rate, whether or not this mode was present in the
initial data. This mode would then eventually dominateaveraging scheme may reduce the maximum growth rate

from 1 1 O(ÏDa/a2) to 1 1 O(Da/a2). the solution.
Model parameters were chosen so that Dp̃1/p̃2 5 0.25

and Dp̃2/p̃2 5 0.75, and the baroclinic time step Dt was6. NUMERICAL COMPUTATIONS
chosen so that c1 Dt/Dx 5 0.8. In each computation, the
barotropic equations were solved with a smaller time stepWe now describe the results of some numerical computa-

tions that test the analysis developed in this paper. The Dtf . The ratio Dt/Dtf represents the number of barotropic
substeps of one baroclinic time step.goal is to compare the unstable growth rates predicted by

the analysis with the growth rates that are observed when In one series of computations, the barotropic time step
Dtf was chosen so that c0 Dtf/Dx P 0.8, where c0 is the speedthe partial differential equations are solved numerically.

The algorithms that are tested include the forward– of external gravity waves. More precisely, Dtf was chosen
so that the ratio Dt/Dtf was the smallest integer such thatbackward time stepping analyzed in Section 4 and the

predictor–corrector methods described in Section 5.2. c0 Dtf/Dx # 0.8. The results of the computations are illus-
trated in Fig. 6.1. The top frame shows results obtainedAs before, we consider a linearized system in one hori-

zontal dimension with two fluid layers. In the preceding when the forward–backward method is used to solve the
baroclinic equations. The other two frames correspond toanalysis, the barotropic equations are solved exactly with

respect to t, partly for the sake of simplicity and partly in the predictor–corrector methods described in Section 5.2.
In each plot, the horizontal axis represents values of Da/order to isolate the effects of the operator splitting and

baroclinic time stepping. In the present computations, we a2 , and the vertical axis corresponds to maximum absolute
values of eigenvalues. The circles represent results ob-solve the barotropic equations with short time steps using

a forward–backward scheme in which h is updated first tained from the analysis, and the crosses represent mea-
surements obtained from the numerical computations. Dif-and u is updated second.

Growth rates were estimated from the numerical results ferent values of Da/a2 correspond to different values of
c0/c1 , so the ratio Dt/Dtf varies from one case to another.in the following manner. It follows from the analysis in

Section 4 that each dependent variable in the solution is In most of the cases plotted in Fig. 6.1., the growth rates
observed in the numerical computations are significantlygenerally dominated by a superposition of Fourier modes

of the form o4
j51 ajl

n
j eikx, where the lj’s are eigenvalues of larger than the rates predicted by the analysis. The results

suggest that the barotropic time stepping may make a sig-the problem (4.12), the aj’s are coefficients that depend on
the wavenumber k, and n is the time index. Let l denote nificant contribution to the growth rate.

In order to check the growth rates predicted by thethe maximum of ul1u, ul2u, ul3u, ul4u. For sufficiently large n,
the magnitude of each Fourier mode in each dependent analysis, additional experiments were performed with

smaller values of Dtf so as to reduce the effects of thevariable is dominated by a quantity of the form cln, where
c is a constant. The logarithm of this magnitude is approxi- barotropic time stepping. For one problem configuration,

decreasing values of Dtf yielded smaller growth rates untilmately log c 1 n log l. For each of the problem configura-
tions described below, we plotted the logarithm of uu9u in Dt/Dtf reached a value of approximately 1000, and the

growth rates then remained essentially constant as Dtf wasthe top layer for a fixed x as a function of the time index
n. The time integration was continued until the upper enve- reduced further. A series of computations was then per-



328 HIGDON AND BENNETT

formed with Dt/Dtf 5 10,000, and the results are shown in
Fig. 6.2. In this case the growth rates measured from the
numerical computations agree closely with the rates pre-
dicted by the analysis.

7. SUMMARY AND CONCLUSIONS

In a numerical model of ocean circulation, it is highly
desirable to split the fast external motions and slow internal
motions into separate subproblems. However, if the split-
ting is inexact, then the equations that are intended to
model the slow motions may actually admit some fast mo-
tions. This could create stability problems if these equa-
tions are advanced in time with an explicit method having
a long time step. In this paper, one example of a splitting
is applied to a simple physical situation consisting of a
linearized flow in one horizontal dimension with two fluid

FIG. 6.2. Comparison of growth rates. The situation is the same aslayers and flat bottom topography. When some standard
in Fig. 6.1, except that the numerical solutions of the system are basedmethods are used to discretize the slow equations, the
on much smaller time steps Dtf for the barotropic equations. In the presentresulting algorithms are unstable. In a more realistic ocean
case, the discretization errors for the barotropic equations are much

model, mode mixing could also be generated by nonlinear- smaller, and the numerical results agree closely with the results of the
ity and variable topography. Numerical ocean models typi- analysis.
cally contain dissipative mechanisms of various types, and
these may aid in suppressing the effects of inexact splitting.
It would be valuable to analyze and construct splittings so long-term integrations such as those found in climate mod-
as to minimize the use of such mechanisms, especially for eling. This problem is the subject of current research.
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